Tetrahedron Letters 51 (2010) 3372–3375

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

- 2010 Elsevier Ltd. All rights reserved.

Palladium-mediated reductive Mizoroki–Heck cyclization strategy for the regioselective formation of dibenzoazocinone framework

K. C. Majumdar *, Tapas Ghosh, Santanu Chakravorty

University of Kalyani, Kalyani 741 235, WB, India

article info

ABSTRACT

Article history: Received 25 March 2010 Revised 16 April 2010 Accepted 20 April 2010 Available online 24 April 2010

Keywords: Dibenzoazocinone Reductive Mizoroki–Heck cyclization $Pd(PPh_3)_4$ Mixed solvent 2-Iodophenylacetic acid

Nitrogen heterocycles are among the most useful compounds and their utility has been widely demonstrated in the chemistry of natural products, material sciences, and in pharmaceutical chemistry.¹ Their synthesis has attracted considerable attention due to their importance as building blocks for many therapeutically useful materials, as well as a wide range of potential biological activity of both synthetic and naturally occurring derivatives. The eight-membered nitrogen-containing framework is found in several alkaloids such as manzamine A , 2,3 2,3 2,3 keramamine- A .^{[4](#page-2-0)} Some N-substituted dibenzoazocine derivatives are found to exhibit hypotensive properties.⁵ A number of approaches for the synthesis of nitrogen-containing heterocycles have been developed, most of them lead to the formation of five- and six-membered ring systems. However, the construction of eight- and nine-membered het-erocycles is limited.^{[6](#page-3-0)} The main reason is that their formations are often inhibited due to entropy factors and transannular interaction.[7](#page-3-0) Tetrahydrobenzo[d]azocine derivatives have been synthesized by Larock et al. via palladium-catalyzed heteroannulation of allenes.⁸ However, this procedure renders the compounds as mixtures of E/Z isomers of the exo-cyclic double bond. Transition metal-catalyzed reactions were used for generating dibenzoazocinone scaffolds[.9](#page-3-0) Thus the Mizoroki–Heck reaction of olefins proved to be high yielding and reliable. Though this approach regioselectively leads to eight-membered rings, a problem with the geometry and location of the resulting double bond still exists, due to unselective elimination of palladium-hydrogen species at the final step

The synthesis of dibenzoazocine framework through palladium-mediated reductive Mizoroki–Heck cycli-

zation has been described. The procedure is simple, straightforward, and regioselective.

of the Mizoroki-Heck reaction. Donets and Eycken^{[10](#page-3-0)} recently developed a microwave-assisted cyclization procedure to synthesize extended alkyl chain containing dibenzoazocinone framework. However, the procedure is low yielding and applied for only two-

Scheme 1. Synthesis of precursors 2a-f.

Corresponding author. Tel.: +91 33 2582 7521; fax: +91 33 25828282. E-mail address: kcm_ku@yahoo.co.in (K.C. Majumdar).

^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:[10.1016/j.tetlet.2010.04.084](http://dx.doi.org/10.1016/j.tetlet.2010.04.084)

Table 1 Optimization of the reductive Mizoroki-Heck reaction^a

Entry	Catalyst	Solvent (v/v)	Time (h)	Temp $(^{\circ}C)$	Yield \mathfrak{b} (%)
1 ^c	Pd(PPh ₃) ₄	DMF/H ₂ O (7:3)	0.5	100	60
2	Pd(PPh ₃) ₄	DMF	0.5	100	
3	$Pd(PPh_3)_4$	DMF/H ₂ O (1:1)	0.5	100	30
$\overline{4}$	$Pd(PPh_3)_4$	DMF/H ₂ O (7:3)	0.5	140	20
5	Pd(PPh ₃) ₄	DMF/H ₂ O (7:3)	1.5	100	DP ^d
6	$Pd(OAc)_{2}$	DMF/H ₂ O (7:3)	0.5	100	
7	$Pd(PPh3)2Cl2$	DMF/H ₂ O (7:3)	0.5	100	
8	Pd(PPh ₃) ₄	$DME/H_2O(7:3)$	0.5	100	20
9	Pd(PPh ₃) ₄	$CH_3CN/H_2O(7:3)$	0.5	100	15
10	$Pd(PPh_3)_4$	THF/ $H_2O(7:3)$	0.5	100	15

In all cases HCOONa was used as reducing agent.

^b Isolated yield.

Optimized reaction condition.

 d DP = Decomposed product.

electron-donating substrates. Our continued interest in the palladium-mediated synthesis of heterocycles¹¹ has prompted us to undertake the present study to synthesize dibenzoazocinone framework based on palladium-mediated intramolecular reductive Mizoroki–Heck cyclization.

The precursors 2a–f for our present study were synthesized in good to moderate yields by the reaction of either N-methyl or Nethyl o-substituted amines 1a–f with 2'-iodophenylacetyl chloride (which was in turn prepared by refluxing 2'-iodophenylacetic acid with thionyl chloride) as depicted in [Scheme 1.](#page-0-0) The o-substituted N-methyl or N-ethyl amines were prepared from N-methyl or Nethyl amines by bromination and subsequent Sonogashira cross coupling with phenyl acetylene.

The optimal conditions for the reductive Mizoroki–Heck cyclization were established with the amide 2b. The reaction was run under the conventional heating condition at 100 \degree C in a mixture of solvents (DMF/water in 7:3 volume) in the presence of tetrakis (triphenylphosphine) palladium(0) (10 mol %) as a catalyst and sodium formate as a reducing agent. We found that temperature plays an important role in the cyclization. As the temperature was increased from 100 \degree C, extensive decomposition of the starting materials occurred leading to lowering of the yield (10–20%) of cyclized products. On the other hand, decreasing the temperature from the optimal temperature results in the recovery of the starting materials. The cyclization process is extremely time dependent. The reaction was run for about 30 min. The increase in the reaction time resulted in the decomposition of both the product and the unreacted starting material. Under the optimal condition (DMF/ water in 7:3, Pd(PPh₃)₄, HCOONa, reflux at 100 °C for 30 min.) the amide 2b was regioselectively cyclized to afford 8-exo product 3b in 60% yield along with the unreacted starting material. Even at this optimal condition some decomposition occurred. The catalysts like Pd(OAc)₂, Pd(PPh₃)₂Cl₂ were found to be ineffective. Solvents like acetonitrile, DME, THF with water gave low yields of the cyclized product. The reaction failed in the absence of water due to the ineffectiveness of the reducing agent in organic solvent (Table 1).

The regioselective formation of 8-exo-cyclized product during the course of the reaction can be rationalized by a mechanism sim-ilar to the one proposed by Donets and Eycken.^{[10](#page-3-0)} An aryl palladium Π -complex 4 generated initially from 2b is transformed readily into a σ -vinyl palladium complex 5 via simultaneous syn-addition to the triple bond. endo-Cyclization via a hypothetical intermediate 6 is unfavorable due to high strain exerted by the trans-geometry around the double bond in the nine-membered intermediate.^{[10](#page-3-0)} The σ -vinyl complex readily gets reduced to regenerate the Pd(0) catalyst with a reducing agent present in the reaction mixture. syn-Addition of palladium to the triple bond during the Mizoroki–Heck reaction implies exclusive formation of azocinone compounds possessing Z configuration of the exo-cyclic double bond (Scheme 2).

All the other substrates $2a$, $2c$ –f were treated similarly to produce the 8-exo cyclized products in 42–65% yields ([Table 2](#page-2-0)).

Donets and Eycken¹⁰ reported the dibenzoazocinone framework via microwave-assisted cyclization. The procedure is low yielding and applied only to two-electron-donating substrates. Recently we have also synthesized⁹ different dibenzoazocine and azocinone frameworks through palladium-mediated Mizoroki–Heck cyclization strategy. However, this process led to the formation of ninemembered cyclized products and bond migration products along with expected 8-exo cyclized products. Another drawback of such a process is that either the reaction failed or produced very low yield of the cyclized products in the case of substrates containing an electron-donating group attached to the amide nitrogen.

In conclusion, we have achieved an efficient and straightforward method for the construction of potentially bioactive dibenzoazocinone framework via palladium-mediated reductive Mizoroki–Heck cyclization. In this method the 8-exo-cyclization products have been obtained in a regioselective manner. The protocol is equally effective for both electron-donating and electron-withdrawing substrates.

Scheme 2. Reagents, conditions, and plausible mechanism of the reaction.

Table 2

Acknowledgments

We thank the DST (New Delhi) and the CSIR (New Delhi) for financial assistance. T.G. and S.C. are grateful to the CSIR (New Delhi) for their research fellowships.

References and notes

1. (a) Vedejs, E.; Galante, R. J.; Goekjian, P. G. J. Am. Chem. Soc. 1998, 120, 3613–3622; (b) Boger, D. L. Chem. Tract-Org. Chem. 1996, 9, 149; (c) Barluenga, J.; Tomas, M. Adv. Heterocycl. Chem. 1993, 57, 1–80; (d) Boger, D. L.. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5,. Chapter 4.3 (e) Ghosez, L. Stereocontrolled Organic Synthesis; Blackwell: London, 1994. p 193; (f) Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987; (g) Behforouz, M.; Ahmadian, M. *Tetrahedron* **2000**, 56
5259–5288; (h) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. *Tetrahedron* 2002, 58, 379–471; (i) Attanasi, O. A.; Filippone, P. Synlett 1997, 1128– 1140; (j) Boger, D. L. *Chem. Rev.* **1986**, 86, 781–793; (k) Kumar, K.; Kapoor,
R.; Kapur, A.; Ishar, M. P. S. *Org. Lett.* **2000**, 2, 2023–2025; (l) Sandhu, J. S.;
Sain, B. *Heterocycles* **1987**, 26, 777–818; (m) O'Hagen, 2000, 17, 435–446; (n) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell Science: Oxford, UK, 2000.

- 2. Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. J. Am. Chem. Soc. 1986, 108, 6404–6405.
- 3. Ichiba, T.; Sakai, R.; Kohmoto, S.; Saucy, G.; Higa, T. Tetrahedron Lett. 1988, 29, 3083–3086.
- 4. Nakamura, H.; Deng, S.; Kobayaski, J.; Ohizumi, Y.; Tomokate, Y.; Matsuzaki, T.; Hirata, Y. Tetrahedron Lett. 1987, 28, 621–624.
- 5. Casadio, S.; Pala, G.; Crescenzi, E.; Marazzi-uberti, E.; Coppi, G.; Turba, C. J. Med. Chem. 1968, 11, 97–100.
- 6. (a) Dieters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–2238; (b) Yet, L. Chem. Rev. 2000, 100, 2963–3007; (c) Phillips, A. J.; Abel, A. D. Aldrichim. Acta 1999, 32, 75; (d) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881–930.
- 7. Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
- 8. Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859–6866.
- 9. (a) Majumdar, K. C.; Samanta, S.; Chattopadhyay, B. Tetrahedron Lett. 2009, 50, 4866–4869; (b) Majumdar, K. C.; Chattopadhyay, B.; Samanta, S. Tetrahedron Lett. 2009, 50, 3178–3181.
- 10. Donets, P. A.; Eycken, E. V. V. Org. Lett. 2007, 9, 3017–3020.
- 11. (a) Majumdar, K. C.; Chattopadhyay, B.; Ray, K. Tetrahedron Lett. 2007, 48, 7633–7636; (b) Majumdar, K. C.; Chattopadhyay, B.; Sinha, B. Tetrahedron Lett. 2008, 49, 1319–1322; (c) Majumdar, K. C.; Chattopadhyay, B. Synlett 2008, 979–982; (d) Majumdar, K. C.; Debnath, P. Tetrahedron 2008, 64, 9799–9820; (e) Majumdar, K. C.; Chakravorty, S.; Ghosh, T.; Sridhar, B. Synlett 2009, 3127– 3130; (f) Majumdar, K. C.; Chakravorty, S.; De, N. Tetrahedron Lett. 2008, 49, 3419–3422; (g) Majumdar, K. C.; Chakravorty, S.; Ray, K. Synthesis 2008, 2991– 2995; (h) Majumdar, K. C.; Chakravorty, S.; Shyam, P. K.; Taher, A. Synthesis 2009, 403–408; (i) Majumdar, K. C.; Sinha, B.; Maji, P. K.; Chattopadhyay, S. K. Tetrahedron 2009, 65, 2751–2756.
- 12. General procedure for the preparation of the amide 2a:
- A mixture of 2'-iodophenylacetic acid (500 mg, 1.9 mmol) and $S OCl₂$ (5 ml) was stirred at 100 °C for 3 h. After evaporation, the residue was dissolved in CHCl₃ (20 mL). A solution of amine $1a(421 \text{ mg}, 1.9 \text{ mmol})$ in CHCl₃ (20 mL) and tetrabutylammonium hydrogensulfate (catalytic amount) were added to the stirred solution of the acid chloride. To this reaction mixture an aqueous solution of K_2CO_3 (526 mg, 3.8 mmol) was added slowly. After stirring for 4.5 h at room temperature, the solution was washed with 5% HCl (2 \times 20 mL) and

then with 5% aqueous NaOH (2 \times 20 mL). The organic layer was dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography over silica-gel using pet. ether– ethylacetate (9:1) as an eluent. Compound 2a: Gummy, yield = 75%, IR (KBr): 2216, 1662, 1592. cm⁻¹, ¹H NMR (400 MHz, CDCl₃): δ_H = 7.72 (d, 1H, J = 7.6 Hz) 7.65–7.66 (m, 1H), 7.52–7.53 (m, 2H), 7.36–7.39 (m, 4H), 7.16–7.26 (m, 4H), 6.83 (t, 1H, J = 7.2 Hz), 3.98-4.06 (m, 1H), 3.69-3.78 (m, 1H), 3.61 (d, 1H, $J = 16.4$ Hz), 3.55 (d, 1H, $J = 16.4$ Hz), 1.17 (t, 3H, $J = 7.2$ Hz). Anal. Calcd for $C_{24}H_{20}$ INO: C, 61.95; H, 4.33; N, 3.01. Found: C, 61.86; H, 4.18; N, 2.83.

General procedure for the reductive Mizoroki–Heck cyclization of compound 2a: A mixture of the compound 2a (100 mg, 0.21 mmol), HCOONa (21.9 mg, 0.32 mmol), Pd(PPh₃)₄ (7.4 mg, 6.4×10^{-3} mmol) in DMF/H₂O (10 mL, 7:3) was heated with continuous stirring at 100 \degree C for 30 min. After completion of the reaction as monitored by TLC, the reaction mixture was cooled and water (5 mL) was added. This was then extracted with CHCl₃ (3 \times 15 mL). The CHCl₃ extract was washed with water $(2 \times 10 \text{ mL})$ followed by brine (10 mL). The organic layer was dried (Na₂SO₄). Evaporation of CHCl₃ furnished a crude mass. This was purified by column chromatography over silica-gel. Elution of the column with pet. ether–ethyl acetate (9:1) afforded the product 3a. Compound **3a:** White solid, yield = 65%, mp 126-128 °C, IR (KBr): 1651, 1592 cm⁻¹ , 1 H NMR (400 MHz, CDCl₃): δ_H = 7.54 (dd, 1H, J = 1.2 Hz, 7.6 Hz), 7.35–7.48 (m, 3H), 7.27–7.34 (m, 3H), 7.04–7.23 (m, 4H), 6.78–6.81 (m, 2H), 6.78 (s, 1H), 3.61– 3.65 (m, 1H), 3.53 (d, 1H, J = 14.0 Hz), 3.35 (d, 1H, J = 14.0 Hz), 3.02–3.11 (m. 1H), 0.93 (t, 3H, J = 7.2 Hz). ¹³C NMR (125 MHz, CDCl₃): δ_c = 169.5, 142.0, 141.0 139.3, 136.4, 135.4, 133.6, 131.1, 131.2, 130.9, 129.1, 129.0, 128.5, 128.3, 128.2, 128.1, 127.6, 127.5, 125.1, 43.7, 42.6, 14.1. MS (EI): m/z = 339 [M⁺]. Anal. Calcd for $C_{24}H_{21}$ NO: C, 82.92; H, 6.24; N, 4.13. Found: C, 82.74; H, 6.18; N, 4.06.